Geometric Transformations

Projective

\[x' = H.x\] \[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

-Preserves: Concurrency, colinearity, order of contact (intersection, tangency, inflection, …), cross ratio

Translation

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

Affine

-An affine transformation is a geometric transformation that preserves collinearity (points lying on a straight line remain on a straight line) and ratios of distances (the midpoint of a line segment remains the midpoint after transformation).

Total DOF in 2D: 4+2=6 degrees of freedom.

Total DOF in 3D: 9+3=12 degrees of freedom.

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & tx \\ a_{21} & a_{22} & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

Similarity

Total DOF in 2D: 1+1+2=4 degrees of freedom.

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & tx \\ \sin\theta & \cos\theta & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

Isometry

Total DOF in 2D: 1+2=3 degrees of freedom.

Total DOF in 3D: 3+3=6 degrees of freedom.

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \epsilon\cos\theta & -\sin\theta & tx \\ \epsilon\sin\theta & \cos\theta & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\] \[\epsilon=\mp1\]

Euclidean

Total DOF in 2D: 1+2=3 degrees of freedom.

Total DOF in 3D: 3+3=6 degrees of freedom.

\[\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & tx \\ \sin\theta & \cos\theta & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]